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ABSTRACT

A lifting surface theory has been developed
for a helicopter rotor in forward flight for
compressible and incompressible flow, The
method utilizes the concept of the linearized
acceleration potential and makes use of the
vortex lattice procedure. Calculations demon-
strating the application of the method are yiven
in terms of the lift distribution on a single
rotor, a two-bladed rotor, and a rotor with
swept-forward and swept-back tips. In addition,
the 1ift on a rotor which is vibrating in a
pitchinc mode at 4/rev is given, Compressibi-
lity effects and interference effects for a
two-bladed rotor are discussed.

INTRODUCTION

Rotating 1ifting surfaces are an integral
part of the propulsive unit of every aeron-
autical and nautical vehicle, from the
compressor and turbine blades of jet engyines,
the pumps for rocket enyines, to propeller and
helicopter rotors. The aerodynamics of these
rotating elements has been under extensive study
since the advent of the airplane and with a
combination of experimental and analytical
approaches, succcessful designs have been
achieved. In many cases, two-dimensional theory
has been used, usually modified by an assumed
spanwise distribution, and inflow velocities.
This paper presents a compressible, 1ifting
surface method for a helicopter rotor in forward
flight within the 1imits of linearized theory,

The method is based on the concept of the
acceleration potential, originally introduced by
Kussner (1941), The method was first applied to
an oscillating wing in uniform translatory
motion including effects of compressihble flow by
Runyan and Woolston (1957), The acceleration
potential approach has now hecome standard for
the determination of the unsteady aerodynamic
forces for flutter studies of 1iftiny surfaces
in rectilinear motion.

The first use of the acceleration potential
approach for a rotatiny system was made in a
paper by Hanaoka (1962) for the loading on a
marine propeller in incompressible flow., The
acceleration potential has been used in the past
in studying the propeller noise problem, but in
all of these noise propagation cases the problem
was specialized early in the analytical develop-
ment to the so-called far-field case usually
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with a stationary observer, whereas the lifting
surface theory is essentially concerned with the
details of the near-field case for a co-moviny
observer as well as the satisfaction of certain
of certain boundary conditions., Runyan (1973)
utilized the acceleration potential approach to
obtain a solution to the oscillating propeller
in compressible flow, Dat, (1973), has derived
a yeneral expression for an acceleration doublet
for any motion, Pierce and Vaidyanathan (1983)
have treated the helicopter rotor in forward
flight usiny the method cf matched asymptotic
expansion for the incompressihle case. The
procedure developed here involves the precise
numerical inteyration over the surface of the
rotor in a time frame, The method sets forth a
formulation of a fundamental three dimensional,
compressible, unsteady aerodynamic theory for
propellers and helicopter rotors.

The next section contains a brief
derivation of the fundamental equations, iiclud-
ing a discussion of some implications of the
equations, The third section contains a
description of the method of solution, Finally,
the results of some calculations for the several
specific examples ave yivan,

SYMROLS
A rotor blade area
Anm aerodynamic influence
coefficients
An,Bn Fourier coefticients
4 speed of sound

C chord of rotor

Cr thrust coefficlent per blade
(thrust/wpalRy

b vector distance from doublet to

downwash point

) absolute value of

p = d/0 unit vector of §

1 value of sinyular inteyral

K kernel function

n unit vector at downwash point,

. normal to velocity vector

No unit vector at doublet point,
normal to velocity vector

2,m,n direction cosines of n

-

20, Mg, Ng direction cosines of ng

p pressure

T position vector of doublet
from inertial frame origin

R position vector of downwash

point from inertial frame origin
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y source or doublet strength

Rt rotor tip radius

Rs rotor root radius

r distance of downwash point
along the span

ro distance of doublet along the
span

ru upper limit of spanwise panel

rg lower limit of spanwise panel

ro distance of doublet alony
span at singular point time

t field time

v velocity of rotor system,

parallel to x-axis, positive in
neyative x-direction

+

v velocity at downwash points
>

Vo velocity component of V at

the downwash point normal to
the rotor leading edge

>

Vo velocity of doublet

W velocity of rntor system,
parallel to . axis

Wn downwash velocity

Xq distance from pitch axis to
downwash point

X,¥,2 Cartesian coordinates of
downwash point

X0sY0s20 Cartesian coordinates of
doublet position

a twist angle at downwash peint

% twist angle at doublet
position

ap angle of axis of rotation
relative to z-axis

+ +

B Vo/c

> 3 1 v

B ofc = Ta

] angular position of blade at
time t

8o angular position of blade at
time 1

By blade angle of attack

oR blade angle relative to plane
of rotation

u advance ratio

p air density

T, 1 time

T time at which inteyrand in Eq.
(24) becomes singular

¢ velocity potential

Y source acceleration potential

¥ doublet acceleration
potential

v azimuth angle

Q rotation speed of rotor

w vibration frequency of rotor

BASIC FORMULATION

The formulation of tha aerodynamic
equations is based on the linearized
acceleration potential approach. The fluid is
considered perfect, with no separation and the
formulation is based upon the assumption of
small perturbations. The wake created by the
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1ifting rotor is assumed to lie in the skewed
helical path taken by the rotor blade. One
reason for adopting the acceleration potential
approach is that the pressure discontinuity
occurs only on the surface of the biade and thus
the boundary conditions need only be applied on
the blade surface and not throuyghout the wake. -
The blade is treated as a very thin surface of
discontinuicy across which a pressure jump
occurs. Th effect of compressibiity is taken
into account by utilizing the complete
linearized potential for a lifting doublet,
along with the effects of retarded time.

As shown in Fig. 1, an inertial coordinate
system has been used in which the origin of
coordinates is fixed to a point on the yround.
The helicopter rotor is moving in the negative
x-direction with velocity U, in the positive
z-direction with velocity W and is rotating
sounter clockwise with a constant angular
velocity 2. A point of interest on the rotor

+
blade is designated by the radius vector Xo(t) .
from the oriyin of the ground based coordinate

system,

Let ¥ be the acceleration potential of a
source (or doublet), the perturbation pressure
is then yiven by

p = -p¥ (1)
This expression represents the pressure p at
+
point X due to a single source
>

(or doublet) located at X,. The potential ¥
contains a constant "“q" which represents the
strenygth of the source and thus the mac.itude of ; '
the pressure. in this form, there i¢ no

boundary condition available to determine the

value of "q" and the resulting pressure.

Recourse can pe made to the velocity potential,

since the spatial derivative of a velocity

potential represents a velocity., The ,§

relationship between the pressure and velocity :

potential for an inertial coordinate system is , }
¥,

W

p = -t (2) ;

where %% is the substantial derivative.

Dropping out the second order terms
and inteyrating with respect to field time
results in

t

o(t) = [ w(t') at' (3) :

e e, 4 A —

The acceleration potential ¥5 satisfies
the wave equation

2, 1 2
v ‘i’s - -2- —2— = -4n f(x,t) (4)
¢ ot

where f(f.t) is a source distribution. Further-
more, 1f the path of an isolated source is a
function of time variable, fo(t). then

-> - -+
f(X,t) = 6(X - X,) where: & 1is the delta function,
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Using the Green's function formulation the
acceleration potential expression for a moviny
source, Ys can be written as (Morse and
Feshbach, 1978, p. 841)

(s
(o - e X
anft - £ (oo - 22T S
° -t |

(5)

+*
where Xo(71) designates the position of the
+

source at time 1, X 1is the position of the

+*
field point at the time t, Vo(1) is the
velocity of the source point at time t, ¢ s
the speed of sound and q is the strength of
the source. An auxiliary equation which relates
the time interval (t - 1) to the distance
between the two points is

|x - 5(0(1)|

c

t-1=

(6)

which is usually referred to as the causality
condition. Eq. (5) expresse:z the potential as
an explicit function of v, and only through Eq.

(6) as an implicit function of t ans X. From
Eq. (3), the velocity potential due to a moving

source is
—9q(zt)
dt'

t t
{G 41!“) - 5 . EJtl (7)

o (t) = Lvs(t‘) dt'

where § =¥ - io, D= |5|
and dt' = [1 - ﬁﬁﬁl dr'

The yuantities t', t' and t, t satisfy Eq.
(6).

By definition, the doublet velocity

potential ¢p of a doudblet aligned along 50
can be written as

0p(t) = o= a(t) = R v = - B W g
o [¢]
(8)

hd
s 3

nooe o B
=| — .+ 1] q ——— dr'
anc(D-3.8) LA -e 47
Note that for incompressible flow, ¢ + =, the
first term + 0 and the inteyral remains
unchanged except for the upper limit where ¢ =

To obtain the final equation for downwash
Awp, a second directional derivative is

Nn

required. This derivative is taken normal to
the flight path at the location of the downwash
point, as follows

to obtain

DAB/-D-8) (9)

“(Ry bR dn-ge DG * =41/ 5- 3y,
qc

-

*> + + + 2
ro(ro) q noen, - 3no- Dne D

- [)3

] dt

1
Y )

Eq. (9) yives the downwash at a field point
(x, y, z, t) due to a doublet placed at a point
(X0s¥0,2¢,1) having a strength q. In
order to represent a 1ifting surface such as a
rotor, it is necessary to distribute the
doublets over the liftiny surface and integrate
over the surface to obtain the downwash at a
field point. If the downwash is known, the
quantity "q" can be determined. Letting K be
the expression on the RHS of Eq. (9), the final

equation is
- 1
W, = lj\[ K dA (10)

where A' is the area of the rotor surface.

The LHS, wq, represents the known boundary
condition and is the velocity normal to the
velocity vector at the downwash point. By using
the no flow condition for the velocity
perpendicular to the blade surface, the velocity

component in the  direction is Vp tanéy, or

wn(r,t) = Vntanew = {{ K dA' (11)
where V, is the velocity component of V 3t the
downwash point and is normal to the rotor
leading edge and 6, is the angle of attack,

Thus the problem requires setting up a method of
solution of Eq. (11) from which a value of g,
the unknown doublet strength, can be determined
which satisfy the known velocity boundary
conditions wpy.

This represents a rather formidable
computing task and the history of 1iftiny
surface theory even for non-rotating wings has
centered on devisiny approximate methods to
accomplish the inteyration in an economical
manner, One method, termed the vortex lattice
meth.d, has been very successfully applied to
aircraft wings, and is probably the more
economical procedure of the many variants., This
method was first demonstrated for the unsteady
case by Runyan and Woolston (1957) and was later
expanded by Albano and Rodden (1969), This is
the method adopted in this paper and the
application will be discussed later,

——— '1t;!;)f
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Specification of Coordinate System

The blade has the cord C and length Ry -

Rs, Rg being distance to the the root of

the b?ade, Rt is the distance to the tip of

the blade. Let the blade momentarily coincide
with the coordinate system along the positive
x-axis at t = 0 and execute a counterclockwise
rotation with angular velocity 2@ while moving
with velocity U along the negative x direction
and velocity W along the positive z
direction, Since the vortex lattice method has
been adopted, the doublet point lies C/4 ahead
and the downwash point lies C/4 aft of the
section midchord. The position of the doublet
point as well as the downwash point can be
established as follows. The Cartesian
components of the doublet position are

Xg = -UT + rg cos(ft) - (C/4)sin(ar)cos o
¥g = rg sin(Q7)+ (C/4) cos{nt)cos og
Zy = Wt + (C/4) sin o (12)

where rp is the radial distance of the doublet
altong the span. With the substitution of
C+-C, rg+r, 1+t the position of the
downwash point is given by

x = -Ut + r cos(qt)+ (C/4) sin{at)cos a
y = r sin{qat) - (C/4) cos{qt) cos a (13)
zZ =Wt - C/4 sin a

In Egs. (12) and (13), the angles a,ay are the

twist anyles of the velocity vectors ¥ and VO.
respectively, defined by

_ W
tan o = GSTRlan)* e

(14)
an o = W
‘ o U sin{qan)+ ron

The reference plune defined by the doublets and
downwash points is a twisted surface. From
Eq. (12) the doublet velocity can be computed,
namely the time derivative of the position
vectors,

+» LI 2 LI 3 . >
Vo = xoi tydt zok

The unit vector fy is chosen to be
perpendicular to the twisted surface created

L d
by the velocity vector V, which is a function
of ro, through Eq. (14),
+>

Express ng as
» + +* L d

Ny = zoi + moj + nok (15)

where lo‘ mys n, are the directional cosines of

[

the unit vector ﬁo. It can be shown that

W(u + rof sin(ar)+ (C/4)a cos(nr)cos ao)

ot I

L=

(+] '
v /W e

0o 0

H(ron cos (Q1) - (C/4)Q sin(fr)cos uo)

° Vol/{J2 + Vo'

)
Q ————
2 ‘2
W™+ V0
where

[}

+ (r @ cos(at) - (C/4)a sin(ar)cos ao)z (17)

+* »> +> +>
By the same procedure, n = 2i + mj + nk,
where

. = W(U + rQ sin{at)- (C/4)8 cos{qat)cos a)

v,'2 = (U+ r g sin(ar)+ (C/4) cos(ar)cos a )’

] - 15
v J’Hz +V 2

_ -W{ra cos(at)+ (C/4)a sin(at)cos u)

) 2 +Vl

and

v'2 = (U + ra sin(Qt) - (€/4)Q cos(Qt)cos a)2

+ (r@ cos(at)+ (C/4)a sin(at)cos @)% (19)

+ o+

the vector N = X-Xo defined in Eq. (7) can be

expressed as

D = {{u(t-1) + r cos(qt)- o cos{fr)
+ (C/4)(sinint)cos a + sin(at)cos aO)J2
+ [r sin(at)- o sin(Qt)
-(C/4)(cos(nt)cos a + cos(r)cos ao)]2

+ [W(t-1) -(C/4)(sin agt sin a )]

With the substitution of the quantities, the
inteyral Ey. (11) was solved for the unknown
g{rg,t) by using a collocation process based
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on the vortex lattice assumption. The kernel is
singular when C = 0, and this was handled by use
of the finite part technigue.

~ SOLUTION OF INTEGRAL EQUATION

In following the vortex lattice technique
the rotor is divided into a number of
predetermined panels, both spanwise and
chordwise, In each chordwise panel, a line of
doublets of unknown strength qi is located at
the 25% chordwise location of the particular
panel, and the downwash is evaluated at the
point located at 75% chordwise location of the
panel. Therefore, a collocatinn procedure is
used to obtain a set of equations in terms of
the unknown loadings ¢j. It is also assumed
that the spanwise loading qj is constant along
each of the panels, A set of equations is thus
obtained as shown below,

W, = % A8 (21}

r
- (U

where A Ir Kom dr, and where n refers to
L

the downwash point and m refers to the vortex
lattice. The kernel K is a complicated function
which involves an integration over t.

The term q(rg,t) represents the strength
of the doublet located at ry and at time r,
and is proportional to the unknown loading. 1In
order to account for unsteadiness, a solution
was formulated to take into account the time
variation of the strenyth of the wake. This was
done by assuming a Fourier series of the form

m

q(ro.v) = A0 + E (Ancos(nnr) + anin(nnt)) (22)

If q(ro,7) is assumed to be a function of ry
alone, which means that the wake strenyth does
not vary with time, the Fourier series reduces
to q(rg) = Ag. A solution obtained with

this approximation is termed the yuasi-

steady solution,

This series was inserted in the basic
equation and integrated with respect to t.
However, there were more unknowns than
simultaneous equations to solve for the
unknowns, The additional required equations
were obtained by evaluatinyg Eq. (11) at a number
of azimuth locations. For instance ifm =1,
then

a(rgs7) ® Ay + Ay cosart + B;sinat, (23)

The azimuth was divided into equal segments of
1200 and the proper boundary conditions
applied at ¢ = 00, 1200, and 2400 thus
providing the necessary additional equatians.

Numerical’ Integration of Kernel

The integration was performed by rumerical
integration, except for the area surrounding the
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singularity. The integration domain was divided
inte areas as shown in Fig, 2. Areas 1-4
(hatched) were computed numerically using a
two-dimensional Rombery integratfon (Davis and
Pabinowitz, 1967) and the contribution of the
singular region {unhatched) was obtained in
closed form by consideration of the tinite part
as shown in thc next section.

Treatment of Singular Term irn Integral - The
integral in the downwash equation, Eq. (11), is
singular when D+0 and produces a complication
which must be treated properly. It should be
remembered that the inteyration path alony "t"
is the path the aoublet has taken in arrivinyg at
the final doublet point at (c/4, r,) measured

in the local blade coordinates and can be
considered as the wake. The integration takes
place alony the path from -= to the final
doublet position at 1. The distance D is the
distance from the inteyration point at time t to

the downwash point at 3.

There is a particular set of values of rg
and t for which the denominator D approaches
zero, thus resulting in an infinite inteyrand.
The sinyular part of the Eq. (11) is

> > g >
. Jru jtz nen, - 3(Den)(D no)
r T 1)3

dv dr_ (24)
f o

As §+0 at the downwash point, ﬁ becomes

perpendicular to ﬁ, therefore, at the singular
point, the cecond term is zero and will be
neglected in the treatment of the sinyularity.
However, this second term is retained in all of
the numerical inteyrations involving Areas 1-4
since it represents an important contribution
particularly when the blade is passing over a
trailing wake.

The time and distance at which the integral 1

becomes singular are designated by t and rq.

The donain of the integration in Eq. (24)
consists of a rectangle in which the duration
t2-1] is kept extremely small., In other

words, the integration is performed along a siit
in rg, over which the 2nd term in Eq. (24) is
negligible, Therefore the inteyral I can be
approximated by

L4 +>
r T, N o N
2 0
1e [ Y )¢—T0ardr, (25)
s T D °

Furthermore, noticing that NZ is quadratic in
ro, if is independent of ry, then the
integration on ry can be performed
analytically. This can be achieved by
recoynizing that in the vortex lattice method,
the rotor is divided into spanwise panels from
ry to ry. If these spanwise panels are

small then the variation in ag is small.

du2 .. Wa
E’Fo (u sineo+ ron){'r W

2 (26)

If the value of ag is approximated by its mid
panel value, it is possible to integrate Eg.
(24), in closed form in the ro direction,

This is quite acceptable in the helicopter mode,
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because dag/drg is in the order of

magnitude 10-3 or smaller, The value ﬁo is
also a function of ry, but in the region of
the singularity it has a very small vartation
and is evaluated at the singular position,

(;,Fo). Performiny the ry integration
results in the form

I = ;:i g_é_:%_ dr (27)

where ¢(t) is a function containing all the
non-singular part after performing the rp
integration and t{t) = 0, at

=7 {1] < 1< @). It can be argued

physically that since the quantity D(t,ro;

t.r) as well as its modified form f(t) (after
tegration over ry) represents the distance

between two points in space it must be positive

and real for all its arguments, and neser become

negative, Denote the value of ry and 1 at

which D becomes zero as ;0 and t9. Thus, in
the neighborhood of t the function f(t) behaves
like a parabolic function and has a second order
zero,

Expanding f(t) in a Taylor series about the
singular point t results in
flx) = () + £(D=1) + £ (r- D772+,

(78)
Since 1 is a second order zero
and f(1) = £'(7) = 0 (29)
£q. (29) has been verified numerically. If only

the square term is kept in Eq. (28), Eq. (27)

can be written as
< - - .
1oy f 2, el o) g ()

B f"(;) (1-;)2 (t-1)

In Ey. (30), if 12 and 1] are chosen

symmetrically about ;. then the odd derivative
terms integrate to zero, Futhermore, the third

te~m can be neylected since g"(t) is small., The
major contribution comes from the first term,
Then usiny the standard inteyration techniyue
(Mangler, 19562) the final result for the
integral is

l=- %ﬁ)—i;— (31)

where 24t = 12 - 1) and 1) < 1< Y.

A numerical problem arises because the
finite part integration results in a negative
number which is close to the total of the
surrounding numerical integration areas which
are positive. Thus, it is necessary to take the
difference between large numbers, and the final
inteyration accuracy is dependent on the
accuracy of the two integrations. On the one
hand, the numerical inteyration is more accurate
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as At is kept larye because the very larye
values of the integrand near the singularity are
avoided. On the other hand, regardiny the
finite part inteyration, the denominator was
expanded in a Taylor series about the

singular point, 1. Therefore, it is desirable
to maintain At as small as:possible to keep
within the limits of the applicability of the
series expansion, Numerous calculations were
made, varying At until a reasonable

convergence was found., This value was found to

be .0l(t-t), i.e. 1% of the time difference.
Actually, there is very little difference
between 1% or 10% of the time difference and the
computing time and cost fs considerably reduced
by using 10%. For trend studies 10% is
recommended principally to reduce computer
costs, However, for final design type analysis,
a smaller value of time difference At is more
appropriate,

For the spanwise direction, Argy is also
an inteyration limit variable. The finite part
inteyral was obtained by approximating the angle
of twist of the velocity vector across a seyment
by assuminy it constant across the seyment,
having a value as determined at the center of
segment. Numerical experimentation indicates
that for a helicopter, arg = 0 is satis-
factory.

APPLICATION TO SPECIFIC EXAMPLES

The foreyoiny analysis has been applied to
several specific examples which are given in
Figs. (3) and (4). The following section
presents results for several paneling
confiyurations; e.y. 5 spanwise and 1 chordwise
panels (desiynated (5-1)) and 7 spanwise and 3
chordwise (designated (7-3)). The rotor blade
was maintained at a constant pitch setting of
6g = .1 radians for all the calculations.

Sinyle Blade

In order to investigate the convergence of
the method when usinyg the vortex lattice
procedure, the proyram was run for several
chordwise and spanwise elements for the incom-
pressible case. The thrust coefficient C
vs, the azimuth angle is shown in fig, (5]. (In
all of the following plots for thrust coeffi-
cient vs. azimuth angle, the thrust was
calculated for 16 uniformly spaced azimuth
angles and each curve was faired using a
cubic spline), The rotor was first divided into
5 spanwise and one chordwise ([ -.1) panel and the
results are shown by the solid line, The
chordwise division was increased to (5-2) and
the results are shown by the long dashed line,
It can be seen that very little change has taken
place, The spanwise divisions were increased to
(7-1) and the laryest change occurred at
v = 00 where the difference in Ct is about
11%, Increasing the chordwise divisions to 3
(7-3) shows convergence of the (7-1) case to be
very yood,

An interaciing phenomena occurs in the
reyion of small azimuth angles. For y=0 to
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370, the 11ft increases to a local maximum at
y=370 then the 1ift abruptly falls to a locail
minimum for ys600 and then rapidly increased
to a maximum at y=1000.r A similar phenomenon
is shown analytically by Eglof and Landgrebe
(1983) in Fig. 60 of that report where a

local minimum and a local maximum occur in the
same ranye of azimuth angles, even though the
geometry of the two blades and the flight
conditions are different. Also, in Fig. 93 of
the same repo>t some test data shows a similar
variation of loading in the same azimuth ranye.

The chordwise pressure distributions for
the (7-3) case are presented in figure 6. It
should be remembered that in usiny the vortex
lattice method, the loading is concentrated at
the location of the vortex which for the (7-3)
case is located at .0833C, .416C, and .75C. The
pressure was faired using a cubic spline through
the three vortex locations and the known value
of zero at the trailing edge. The distributions
are given for 7 spanwise positions. In general,
the curves exhibit the expected shape, having
the largest values as the leading edye is
approached. For the span distribution the
values at r/Rt = .85 are slightly laryer than
the values at r/RT = ,9%,, indicating a falling
off in the tip region,

from these concentrated forces, the section
pitching moment can be calculated. Figure 7
presents these results for ¥= 90 degrees, The
section moment was taken about the 1/4 C and a
nose down moment is taken as positive. The
pitching moment shows some rather dramatic
changes alony the span. The moment is nose up
near the tip (r/RT = .95), chanyes to a smali
nose down value, then becomes nose up for most
of the inboard region. Inteyration of the
moment would result in a total pitch moment up
at ¢ = 900,

Swept Tip

The segments used for the vortex lattice
for the swept tip studies were(5-1), where two
equal segments were used in the tip region and
three equal segments were used in the unswept
inboard section, In Fig. 8 the 1ift is shown
plotted against azimuth for the two sweep
conditions and for zero sweep, In general, the
three results show little difference, The
sweptback configuration has a larger 1ift from
v » 3000 to 400, For v ~ 1000 to 2400,
the swept forward confiyuration has a sliyntly
larger 1ift, It appears that the total lift for
one rotation for the swept-back case and the
sweptforward case would give about the same 1ift
as produced by the unswept rotor, In Fig. 9
the 1ift distribution alony the 1otor span is
yiven for ys= 00, The major effect of sweep
ts concentrated at the tip, where the swept-back
tip load is greater than both the unswept and
sweptback cases . In fig, 10, ¥'= 1800,
Comparing to fig. 9, the swept-back tip load is
larger than both the unswept and the
swept-forward tips.
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Blade Oscillatiny in Pitch

An example of unsteady loads on a rotor
blade with (5-1) paneling which is oscillating
in a pitching mode about the mid-chord at a
frequency of 4 per revolution (120 cycles/sec)
is yiven on fig, 11. For this case a 17 term
Fourier series (m=8) was used to simulate the
oscillating load, which was comprised of one
constant term, 8 cosine terms, and 8 sine
terms, The steady and unsteady rotor blade
loading is yiven for one revolution., The blade
was oscillated through an angle of .1 rad.
about a mean anyle of .1 rad. The effect of the
oscillation is readily apparent as compared to
:he steady case. With the harmonic
representation of the loading, the magnitude and
phase of the several harmonic loads are casily
determined. The magnitudes are plotted in
Fig. 12. The only harmonic loads that were
siynificantly changed from the steady case were
the 3rd, 4th and 5th., Both the 3rd and 5th
harmonics were inc»:> ~d and the 4th harmonic
was dramatically incr.>sed, Another calculation
was made for the non-oscillatory unsteady case
and compared to the quasi-steady case.

Virtually no difference was observed, indicating
that, at least for this case, the rate of change
of loading in a revolution of the blade is small
enough so that the effect of a variable wake is

negligible,

Compressible Effects (5-1)

For a one-bladed rotor, the effect of
compressibility is illustrated in Fig. 13, in
which the Ct is plotted against azimuth
angle, The incompressible result is included
for comparison. As expected, the compressibie
load is laryer than the incompressible
throughout one revolution. The effect is
yreatest in the region of the advancinyg hlade
and smallest in the retreating region as would
be expected.

Two-B"aded Rotor in Compressible Flow (5-1 per

blade)

The method has been extended to the
two-bladed rotor for the compressible case and
the results are shown in Fiy, 14, The thrust
coefficient Cy per olade is given vs, azimuth
angle for a sinyle bladed rotor and for a
two-bladed rotor, For azimuth angles from
v = 200 to 1200 the single blade rotor has a
larger Cr. For y= 1209 to 2600, the Oy
on the one and two-bladed rotors are
approximately the same. However, for ¢ = 2600
to 3400 a dramatic reduction in 1ift occurs
for the two-bladed rotor as compared to the one
bladed results, The lowest 1ift occurs at
V= 2920 which places the other blade of the
two-bladed rotor at ¥= 1120, the point of
maximum 11ft on the other blade, Apparently the
high 11ft on the blade at ¥ = 1120 creates a
very unfavorable induced velncity on the second
blade at y= 2920 which req.ires the loading
to yo to zero in order to satisfy the boundary
conditions at y= 2920,
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CONCLUDING REMARKS

A linearized lifting surface theory
inciuding the effects of compressibility has
been developed for a helicopter rotor in forward
flight., The method utilizes the concept of the
acceleration potential, and makes use of the
vortex-lattice procedure for performing the
required integrations. In addition, the method
has been extended to include the effects of
unsteady flow.

Sample calculations have been done for
several cases. These include the effect of
swept-back and swept-forward tip. The effect of
these two tip configurations was minimal on the
total loading for one revolution. However, the
loading distribution changed considerably for
several azimuth positions, A comparison of the
thrust coefficient, Ct, of a one bladed rotor
and a two bladed rotor was made. In the
azimuthal range between 200 and 1200, the
one bladed rotor showed higher 1ift. However
between ¥ = 2600 to 3400 the two bladed
rotor indicated a lower Ct. Compressibility
was investiyated for one confiyuration. As
expected, the effect was greatest in the
advancing blade region ( ¢.= 900) and was
minimal in the retreating blade region. The
effect on Ct of a bladu: oscillating in pitch
at 4/rev is yiven. The effect on the total
blade 1ift is shown and the effect of the
oscillation is readily apparent. The harmonic
content was calculated and the yreatest
difference between the oscillatory and
non-oscillatory cases was found in the 4th
harmonic.
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LIFTING SURFACE THEORY FOR A HELICOPTER ROTOR IN FORWARD FLIGHT 5

H. Tai ‘

and -

-~ Harry L. Runyan &+
T s i
e g b
s Bob Sopher, Sikorsky Aireraft: Just a couple of questions. One, you had a rigid rotor in thias f
Lo analysis? N
=4 H

W Tai: Yes. !
Wb
'3 Sopher: There is no aeroelasticity and you went up toa u of .17?

& Tal: That's correct. .
9}' Sopher: First of all, I think that as soon as you put aercelasticity in you are going to see

aE different trends when you put sweep on in comparison without sweep. : L

. -
T Tai: 0Oh, sure. %

:f] pher: The second thing is at u equal to .17 I think that the skewed helical wake will not LA

&g be a very good approximation to the actual wake, which will be substantially distorted--more -

i like a wake that you would get under hover conditions. So I question the utility of assuming a o

il skewed h:iical wake. R

il e

.3 Tai: As T pointed out this is a first cut. Of course later you can modify this by iteration e

§< processes. You can go back and calculate the wake and put it back again. Hopefully, that : by

= procedure would ~ive you a better result. !

he -

Y | i
gé; Sopher: The third question is what advance ratios do you expect to apply the analysis up to? D
- Tai: The answer is I don't know. However, I would think that the higher forward speed would
EE probably have a better answer. Because you don't depend on the wake that much.

- Sopher: [ question that because as you go up to higher speeds you are going to find that you
- run into situations where you get transonic flow on the advancing blade and I do not believe
" that the linear analysis will apply accurately under those conditions.
{ Tai: Perhaps you are right.
> Sopher: As a matter of fact this research center has developed transonic flow analyses which
: apply to three dimensional lifting blades so I would say that the primary utility that I would
- see in this analysis is for hover applications where the linear analysis is valid, but you would
. have to use a distorted wake.
Tai: For hover cases you would really expect the wakes to stack up and then you end up with a
very difficult mathematical problem. However, I guess from my past experience you probably can
> get the loading by some numerical procedure, For example, you can do extrapolation. Assuming a

certain W and then you extrapolate for W = 0. I don't know. We don't have a clear under-
standing. I admit that.

Jim MoCroskey, U.S. Army Aeromechunies Laboratory: You have made some nice progress on this -
approach since you talked with us a year or so ago. It's interesting; it's nice to see some P
results being generated for some vealisvic cases, I wanted to ask a couple of minor questions. I

I presume this blade is untwisted, is thai right?
Tai: VYes. o
MoCroskey: How did you treat the reverse f]uw region? ﬂ

Tai: The twist can be added on very easily because [we only have to] add on the boundary condi-

tion. T5 avoid a reverse phenomenon we deliberately use very large cutoff. You can see [that
it is] _six feet. We try to avoid that region.

MoCroskey: In fact the sketoh in the book is a little misleading because the cutout is more hRN
like §0§ instead of the 10 or 15% [that appears in the figure). So you just avoided it by
having a root cut out.

Tai: Yes.
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MoCroskey: The final thing is on the influence of compresaibility. Do you have some idea of
what you predict in Figure 13; is that a larger effect than you would predict if you just used
some kind of Prandtl-Glauert scaling on the incompressible solution?

Tai: Well, I guess we should be blamed for not making the abstract very clear. We used a very,
very honest way of doing that. We didn't use -ny approximation at all. In other words, as I
pointed out, you find the r as function of ro- In other words, you give it the radius of the
doublet (and] you go there and find the t which serves as your upper limit--which is not a
trivial matter. To answer your question we say that we use true, honest compressibility effect.

McCroskey: But the question is how good would the Prandtl-Glauert type approximation be to what
you actually calculated?

Tai: Well, to honestly answer that question--we don't know. We didn't check (it], but I think
it is not very easy to check it out.

Bob Ormiston, U.S. Army Aeromechanics Laboratory: I want to commend your results. It looks
like you have made some pretty good progress in the last year or so. The methods we are using
now for routine rotor loads analysis are usually based on some fairly primitive assumptions like
strip theory and 2-D airfoil coefficients and so forth and what we ultimately have to get to is
very, very sophisticated, maybe, 3-D CFD kinds of analyses. It looks like what you've got is an
intermediate type of analysis which may be very practical. My question is do you think there is
a practical way to generalize the results you have gotten, say, to come up with generalized
forcing functions for specific loading distributions, a family of loading distributions that you
might be able to calculate and then not have to repeat the integration problem for each particu-
lar configuration that you are analyzing? Is there a practical way to do that?

Tai: Well to answer your question, the answer is yes. I did not mention that when we break the
blade into different segments. Apparently the matrix is highly diagonal. In other words off
diagonal matrix you can use less accurate methods to generate. Beyond that, to answer your
questioa, I think in a practicai sense we can generate those matrix elements and store them and
only change the boundary conditions to do all the types of calculations. In other words, the
answer is indeed it can be very practical.
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